
Pergamon 
Int. J. Multiphase Flow Vol. 20, No. 2, pp. 315-338, 1994 

Copyright © 1994 Elsevier Science Ltd 
0301-9322(93)E0011-S Printed in Great Britain. All rights reserved 

0301-9322/94 $7.00+ 0.00 

M O D E L I N G  O F  S O L I D S  G L O B A L  F L U C T U A T I O N S  I N  

B U B B L I N G  F L U I D I Z E D  B E D S  B Y  S T A N D I N G  

S U R F A C E  W A V E S  

J. G. SUN, ~ M. M. CSEN 2 and B. T. CnAO 2 
IArgonne National Laboratory, 9700 South Cass Ave, Argonne, IL 60439, U.S.A. 

2Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Cbampaign, 
1206 West Green St, Urbana, IL 61801, U.S.A. 

(Received 10 July 1991; in revised form 19 October 1993) 

Abstract--The characteristics of solids global fluctuation in gas fluidized beds was examined. It was 
identified that sloshing is a dominant mechanism in bubbling fluidized beds. Experiments were conducted 
using the computer-aided particle tracking facility to examine the solids sloshing motions and to determine 
the fluctuation frequency. For cylindrical beds of intermediate depths, there are two modes of sloshing; 
namely, the axisymmetric mode and the antisymmetric mode. A standing surface wave model has been 
developed to predict the global fluctuation frequency of the solids sloshings in beds of intermediate and 
shallow depth. The axisymmetric and the antisymmetric modes of sloshing in cylindrical beds are the full- 
and half-wave modes of the standing surface waves. The model predictions for the sloshing frequency were 
found to be in good agreement with the experimental data of this study and with others in the literature. 
More importantly, it was found that, although the excitation for bed fluctuations originates from bubbles, 
the fluctuation frequency is controlled by surface waves. 
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1. I N T R O D U C T I O N  

Solids motion in a gas fluidized bed is characterized by fluctuations. Depending on the experimental 
conditions, such as particle material and morphology, bed geometry, gas velocity etc., the 
fluctuations may be associated with bubbling, slugging, turbulence or their combination. Bubbling 
and slugging occur at gas velocities which are low compared with the particle's terminal velocity 
and the fluctuations have dominant characteristic frequencies. This paper focuses on bubbling beds 
only. 

Pressure measurement using sensitive transducers located on the walls of a fluidized bed at 
various axial locations has been the common technique used to study solids fluctuations. The 
pressure fluctuation and the concomitant solids fluctuating motion are induced by the bubbles or 
slugs rising in the bed and bursting on the bed surface (Tamarin 1964; Hiby 1967; Lirag & Littman 
1971; Fan et al. 1981). In shallow gas fluidized beds, harmonic pressure oscillations about their 
equilibrium states have been observed (Hiby 1967; Verloop & Heertjes 1974). As the bed height 
increases, the fluctuations become less regular and deviate from being harmonic. In the upper 
portion of the bed, it is the motion of the large bubbles that dominates the behavior of the pressure 
fluctuations. In the lower portion of the bed, pressure fluctuations are associated not only with 
the large bubbles in the central region of the bed formed through bubble coalescence, but also 
smaller bubbles that exist above the gas distributor plate. The latter are responsible for pressure 
fluctuations of smaller amplitude but higher frequencies (Fan et al. 1981). For beds of small 
diameter and large depth, bubble coalescence is complete in a major fraction of the column, 
resulting in the formation of slugs, and distinctly coherent pressure fluctuations can be observed 
(Baeyens & Geldart 1974; Svoboda et al. 1984; Noordergraaf et al. 1987). 

The origin of solids fuctuations in fluidized beds has been examined by Jackson (1963), 
Anderson & Jackson (1968), Homsy et al. (1980) and Didwania & Homsy (1981a) using linear 
instability analysis based on the two-phase equations of fluidization. These studies showed that the 
state of uniform fluidization is unstable to small perturbations of voidage. In liquid fluidized beds, 
the growth rate is low and the development of the porosity waves could be observed experimentally 
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(Anderson & Jackson 1969; El-Kaissy & Homsy 1976). In gas fluidized beds, however, the predicted 
rate of growth of instability is so rapid that it can hardly be observed from experiments (Anderson 
& Jackson 1968). Although statements have been made that the growth of the small voidage 
disturbances would result in the formation of bubbles, the linear analyses just cited can only provide 
information on the initial state of the bed fluctuations. 

Hiby (1967) considered the spontaneous vertical oscillation of individual particles in shallow 
fluidized beds. He first calculated the resonance frequency of a particle that was bound to its mean 
position resulting from the combined action of gravity and the quasi-elastic lifting force due to fluid 
flow. The oscillation frequency of the entire bed was then taken to be the weighted mean of the 
natural frequencies of the different layers of the particles. This model was later modified by Verloop 
& Heertjes (1974) by assuming that all particles in the bed oscillate in phase and of same frequency. 
For a shallow bed, the frequency is 

• 1 [ g  ( 2 - ~ ' ~ ' ]  ''2 
.1 = ~ L ~  \ - i - - / j  • [l] 

The foregoing relationship holds when the bed height is less than a critical value, which occurs when 
the porosity wave reaches the bed surface in half period• Beyond this critical height, slugging occurs 
and the oscillation frequency can then be related to the bubble rise velocity• It is given by 

(gD)  1/2 
A = 0•35 - -  [2] 

nmr 

Jones & Pyle (1971) and Goossens (1976) used a similar approach and their results generally agree 
with those of Hiby (1967) and of Verloop & Heertjes (1974). 

Davidson (1968) examined the influence of the compressibility of the gas in the plenum beneath 
the bed when the resistance of the distributor was low. He assumed that the solids in the bed 
behaved like an oscillating solid mass, compressing and rarifying the gas in the plenum. This 
model was commonly referred to as the piston model and for an undamped system the natural 
frequency is 

1 (?PA2"~ '/2 
f = ~ \-M--v-J ' [3] 

Wong & Baird (1971) modified the model by including the effect of the permeability of the 
particulate phase, which acts like a damper for the pressure fluctuation• The predicted fluctuation 
frequency is generally smaller than that of [3]. 

Baeyens & Geldart (1974) developed a model for the pressure fluctuation in slugging fluidized 
beds. The frequency of the solids fluctuation was evaluated from the slug velocity and the distance 
between the consecutive slugs. It is given by 

0.35 ( g )  '/z 
f~ = ~ -  , [4] 

where k is a parameter depending on the bed diameter and height. For very deep beds with complete 
bubble coalescence, their experimental data showed that k depends only on the bed diameter and 
k = 9.38D-0.357 ( D  in cm). It should be noted that the dependence off~ on D is different from that 
in [2]. 

More recently, Fan et al. (1984) and Hiraoka et al. (1984) proposed a dynamic model based on 
the conjecture that the solids fluctuations consisted of the present fluctuations due to the flow of 
bubbles in the bed and the time-delayed fluctuations of the gas flow through the distributor. 
An integral dynamic equation relating the bed height to the various physical parameters was 
derived. The equation was then linearized for small fluctuations of the various quantities, and 
the solution of the linearized equation provided the dominant frequency. The model predicted 
a discontinuous change in the frequency at certain bed heights, which, as they claimed, could be 
observed from experimental results of Verloop & Heertjes (1974). The resulting relationship 
between the dominant frequency and the bed parameters is very complicated. 
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From this brief literature review, it was seen that implicit in all models was that the solids at 
any horizontal level oscillated in phase along the vertical bed column like plane waves. Accordingly, 
they are strictly applicable to slugging fluidized beds. Although attempts were made to correlate 
data obtained in bubbling beds, they had not been successful. For instance, Baeyens & Geldart 
(1974) reported that for beds with H I D  less than about 2 (identified as bubbling beds in their 
analysis) the measured frequencies could not be interpreted by their slugging model and, therefore, 
the data were not presented. Svoboda et al. (1983, 1984) and Rockey et al. (1989) found that the 
dominant bed frequency would increase or decrease with the fluidizing gas velocity, depending on 
the experimental conditions. Such observations could not be explained by the slugging models. 
In this study we propose that there is another mechanism of solids fluctuations which is induced 
by bubble disturbance. The fluctuations are the results of axisymmetric and antisymmetric solids 
sloshings and are dominant in bubbling fluidized beds. Experiments were conducted using the 
computer-aided particle tracking facility (CAPTF) to examine these modes of fluctuations and to 
determine their frequencies. A standing surface wave model was proposed for their prediction. 

2. COMPUTER-AIDED PARTICLE TRACKING FACILITY (CAPTF) 

A description of the principle of operation of the CAPTF and its associated data acquisition and 
processing schemes has been documented previously (Lin 1981; Liljegren 1983; Lin et al. 1985; 
Moslemian 1987). It can be operated in the single- or swarm-particle tracking mode. In the 
single-particle tracking mode, a radioactive tracer, dynamically identical to the bed particles under 
study, is introduced into the fluidized bed and its instantaneous position is tracked by an array 
of 16 scintillation detectors. Details of its use for the determination of the instantaneous Lagrangian 
velocity of the tracer can be found in the four references just cited. The swarm-particle tracking 
mode was used in the present investigation to study solids fluctuations. In this mode, a small 
amount (typically 10 g) of radioactive particles were used as tracers. In the present experiments, 
they were simply the bed particles (soda-lime glass beads), activated in a nuclear reactor to convert 
the sodium in the glass to its radioactive isotope 24Na which has a half-life of about 15 h. 
Following the introduction of the tracers into the bed, their subsequent migration and dispersion 
were monitored by the 16 scintillation detectors surrounding the bed as illustrated in figure 1. 
The detectors were arranged in 4 levels, located at 540, 382, 218 and 54 mm above the distributor 
plate. At each level, there were 4 detectors, 90 ° apart in a horizontal plane. They were also staggered 
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Figure 1. Arrangement of detectors around a cylindrical bed. 
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vertically. The arrangement was designed primarily for particle velocity measurements using the 
single-particle tracking mode. In the present investigation, only detectors in level 3, Nos 9-12, 
were relevant since they were approximately at the same level as the free surface of the bubbling 
bed. After the initial transients, the detector signals (count rates) settled down to statistically 
stationary values representing the uniformly mixed condition. The transient portion of the detector 
signals is related to the mixing rate (Moslemian 1987), and the time variations of the signals in 
the statistically stationary state provide the desired information on the fluctuating frequency of the 
bulk solids motion. 

3. M E A S U R E M E N T  OF THE SOLIDS G LO BA L F L U C T U A T I O N  F R E Q U E N C Y  

The fluidized bed used in this study was constructed from a plexiglass tube of 190.5 mm (7.5 in.) 
inside diameter. The air distributor was made of  sintered plastic plate with a nominal pore size of 
90/~m. The bed particles were soda-lime glass spheres of diameters ranging from 425 to 600/~m 
with a mean of 500 #m and diameters from 600 to 850/~m with a mean of 705 #m. They have 
a specific gravity of  2.50 g/cm 3. These glass spheres are class B particles according to Geldart's 
(1973) classification. They are characterized by the formation of  bubbles at or near the minimum 
fluidization velocity, umr, which was determined experimentally by the usual pressure drop method. 
It was found that umr = 21.9 and 30.2 cm/s for the 500 and 705 #m particles, respectively. 

Experiments were performed for the 500/~m particles a t  U0/Umf = 1.5, 2, 3, 4 and 6 
( / /mf  = 21.9cm/s) and for the 705 #m particles at Uo/Umf = 1.5, 2, 3, 4 and 5 (Umf= 30.2 cm/s), 
u0 being the superficial fluidization velocity. The static bed height was set at 190 mm in all the 
experiments. Three sets of  data were collected for each operating condition, and for each set 
512 discrete signals were recorded by each detector at 30 ms intervals, giving a record length of 
15.36 s. As we shall soon demonstrate, the frequency at which the data were acquired satisfied the 
Nyquist criterion. 

3.1. Behavior of Solids Global Fluctuations 

From the visual observation of the fluidized bed in operation, at least two distinct modes of 
fluctuations have been noticed; namely, an axisymmetric mode and an antisymmetric mode of the 
solids sloshing motion. The existence of the two modes can be identified by examining the signals 
of  the diametrically opposite detector pairs, 9-11 and 10-12 in level 3. The signals from detectors 
9 and 11 are reproduced in figure 2 for the 500 #m particles at U0/Umf = 2. It is seen that most of 
the time the fluctuations are in phase, indicating the presence of axisymmetric oscillations. 
Occasionally, however, out-of-phase fluctuations are also found (between time periods 4.5-5.4 s 
and 7.2-8.1 s in figure 2), indicating the presence of antisymmetric sloshing motions. In passing, 
we note that only when the vertical plane along which the antisymmetric sloshing occurred was 
parallel to the axis of  detectors Nos 9 and 11, are the out-of-phase fluctuations revealed in the 
figure. When the antisymmetric sloshing was perpendicular to the detector axis, the out-of-phase 
fluctuations were not revealed. The latter, however, can be seen from the signals of the detector 
pair 10-12. As it turned out, for the operating conditions used in the present investigation, the 
antisymmetric sloshing was dominant. 

3.2. Interpretation of Detector Signals 

The response of a scintillation detector to "/-radiation from a group of radioactive particles 
depends on (1) the solid angle subtended by the group of particles at the center of  the detector 
crystal and (2) the intervening mass attenuation. In general, the closer the group of particles is to 
the detector, the greater is its output and the higher is the me::surement scr~sitivity. In the 
swarm-particle tracking mode, the tracers, subsequent to initial transients, are essentially uniformly 
mixed with the bed particles. Accordingly, the distribution of the sources of  radiation and that of 
the bed density are the same. Hence, associated with detectors in a given level, there exists the "most 
sensitive volume" of particles where radiation has a characteristic influence on the detector output. 
From the signals shown in figure 2, the mean count rate and the mean peak-to-peak count rate 
variation can be determined and the results are given in table 1. Included in table 1 are similar 
results for detectors at three other levels. The mean count rate recorded by detectors in level ! is 
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Tab le  l. Measu red  and  ca lcu la ted  coun t  rates and  thei r  va r ia t ions  

Level  M e a n  coun t  rate P - P c o u n t  rate va r i a t ion  (%)  

1 225 28 
2 590 24 
3 1650 25 
4 2050 13 

the lowest and that in level 4 is the highest, as one would expect from simply the solid angle 
consideration. The mean peak-to-peak count rate variations, expressed as a percentage of  the mean, 
for detectors in levels 1, 2 and 3 are approximately the same since their associated "most sensitive 
volumes" are all adjacent to the free surface through which bubbles emerge and burst. These 
detectors see for a portion of time more air with sparsely distributed particles than in another 
portion of  time, resulting in count rate fluctuations. On the other hand, the "most  sensitive volume" 
associated with detectors in level 4 is bounded by the air distributor plate at its bottom and by 
the cylindrical wall of the bed on its side, and the count rate fluctuation is mainly due to the rising 
bubbles in the vicinity of the distributor plate. In the present investigation, our primary interest 
is the mode and frequency of the global motion of the particles near the free surface. Hence, the 
output of the detectors in level 3 is the most relevant, provided that its associated "most sensitive 
volume" has a length scale comparable to the radius of the cylindrical bed. 

The mean peak-to-peak count rate fluctuation of detectors in level 3 is 25% of  its mean (see 
table 1). An estimate of the extent of the "most sensitive volume" can be made by defining it to 
be such that 2 5 o  of the radiation seen by its scintillation crystal originates from that volume. 
The results obtained by ignoring attenuation are shown in figure 3 for detectors in levels 1, 2 
and 3. It is seen that the length scale of the "most sensitive volume" associated with detectors at 
level 3 is approximately 1/3 of the diameter of  the cylindrical bed. Had one chosen a different 
definition for the "most sensitive volume", say 50% of  the total count rate, the length scale would 
be larger but not by a significant amount. It is therefore concluded that the mode (sloshing vs 
slugging) and the frequency of the global motion of  particles in the free surface region are reflected 
in the outputs of  detectors in level 3. 
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3.3. S tat is t ical  Propert ies  o f  the Fluctuations 

To extract the mode, frequency and other information from the detector signals described in 
section 3.1, we examine their cross-correlations, autocorrelations and power spectral density 
(PSD) functions. For discrete detector signals of  zero mean acquired at a sampling time interval 
fits, x ,  = x ( n f t s )  and y, = y ( n f t s ) ,  n = 1, 2 . . . . .  N, N being the length of one set of  signals, the 
cross-correlation function, C~,., can be evaluated from (Bendat & Piersoi 1986): 

l N - r  

- -  ~ x . y . + , ,  r = 0 , 1  . . . . .  m ,  [51 Cxy(rfits) N - r .= l 

where r is the lag number and m is the maximum lag number (m < N). The autocorrelation 
function, C~x, can also be evaluated from [5] by simply replacing y by x. The PSD function is 
determined directly from the Fourier transform of  the signal. Using a Hamming  window function 
to reduce the power leakage to side lobes in the frequency domain, the discrete Fourier transform 
of  the signal x, is 

8 2 nn  i n 
X ( f k )  = fits 1 -- cos exp , k = 1, 2 . . . . .  N - 1, [6] 
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where f ,  = k / ( N 6 t s ) ,  i = x ~ -  1, and the PSD function for an average of  n d sets of  signals of  x, is 

1 nd 

Sxx(L) - n~N~t------~ r,  I~(L) l  2. [7] 
j = l  

Figures 4 and 5 show, respectively, the cross-correlations and autocorrelations of the detector 
signals for the 500#m glass particles at uo/Umr = 2. In figure 4, the curves for the opposite 
detector pairs, 9-11 and 10-12, are of  particular interest. They exhibit nearly zero values of 
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correlation at zero time lag, indicating significant antisymmetric sloshing motions. The curve for 
the adjacent detector pair, 9-12, also exhibits a nearly zero correlation at zero time lag, while 
that for 10 11 shows appreciable correlation. Thus, the detailed structure of  the motion is quite 
complex. The autocorrelations, shown in figure 5, reveal the existence of both near-periodic and 
random fluctuations. The large-amplitude periodic oscillations of the autocorrelations represent the 
dominant fluctuations of  the solids motion in the bed. 

Figures 6(a) and (b) show the power spectra of  the detector signals, respectively, for the 500 and 
705/~m glass particles at UO/Um~ = 2. Each graph represents an average of nj = 48 sets of detector 
signals for the operating condition indicated, A significant finding is that both spectra revealed 
a sharp peak at about 2.5 Hz. In this study, the sampling window contained N = 512 data points 
with fits = 30 ms. Hence the Nyquist criterion, 1/6& ~ 2fm~, was satisfied and aliasing should be 
avoided. The frequency resolution, 6 f =  I/(Nf&), was 0.0651 Hz. 

The dominant frequencies for the 500 and 705 #m glass particles at Uo/Umf= 1.5, 3 and 4 
have also been determined and they are listed in table 2. The data for UO/Umf = 1.5 were evaluated 
from the autocorrelations since no clear sharp peak could be identified from the power spectra. 
Furthermore,  it was also found that there was no dominant frequency when uo/Umr > 4. The most 
striking feature of  the data is that the dominant frequency of the solids fluctuations, when it exists, 
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Table 2. Dominant fluctuation frequencies of 500 and 
705/~m glass particles in a cylindrical fluidized bed of 

190 mm i.d. with a static bed height of 190 mm 

u o/u~ 

dp~m) 1.5 2 3 4 

500 2.15 2.61 2.48 2.38 
705 2.20 2.28 2.28 2.48 

is essentially independent of the particle size and the fluidization velocity, at least within the range 
of the variables tested. 

4. M O D E L I N G  O F  S O L I D S  F L U C T U A T I O N  I N  
F L U I D I Z E D  B E D S  

The nature of the solids global fluctuations in a fluidized bed is not clearly understood at present. 
In the literature, a great deal of attention was paid to the motion of bubbles. Instead, this study 
focuses attention on the solids sloshing motion. In what follows, evidence will be presented to 
show that sloshing governs the dominant fluctuations in bubbling beds of shallow and intermediate 
depths. Sloshing may be viewed as large-amplitude surface waves, excited by either random or 
coherent bed density fluctuations (bubbles) or their combination. For a cylindrical bed, the surface 
wave model postulates that the two modes of the solids sloshing motion, namely, the axisymmetric 
mode and the antisymmetric mode, are simply the full-wave and half-wave of the standing waves 
of the solids in a cylindrical column. The two modes of the standing waves are illustrated in 
figure 7. At the present time, the postulate can only be justified by the end results which show 
reasonable agreement with experiments. In this study, only the frequencies of the sloshing motion 
were analyzed. 
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• 
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]~ . . " °  , " 

(b) 

Figure 7. Standing surface waves in a cylindrical column: (a) half-wave mode; (b) full-wave mode. 



324 J G. SUN et al 

4.1. The Standing Surface Wave Model 

As a first approximation, the modes of  the surface waves assimulating bed sloshings are examined 
by considering the bed to consist of an inviscid liquid of constant density. This simplification was 
motivated by the observation that the bed surface bears a strong resemblance to that filled with 
a single-phase liquid. The inviscid fluid assumption can be heuristically justified by the fact that 
bed dynamics is governed mainly by inertia-gravity balance. The constant density assumption may 
seem indefensible, since voidage variations and fluctuations are prominent features of a bubbling 
bed. However, as is shown in section 4.2, the frequency of the surface waves for a fluid with mean 
density variation along the height differs very little from that of fluid with constant density. It is 
also interesting to note that the final results based on inviscid, constant density assumption are 
found to be independent of density. 

The linear theory of surface waves (see LeMehaute 1976) makes use of a velocity potential 
function 4, defined by 

v = - v 4 , ,  [8] 

where v is the velocity vector of the fluid. Hence, the continuity equation is 

V2~b = 0. [9] 

An appropriate solution of this equation is 

2rtf cosh m (H + z) 
c~ = - B  U(r)cos2nft, - H  <~ z <~ 0, [10] 

m sinh mH 

where B is a positive constant related to the amplitude of the velocity lluctuation, H is the fluid 
depth, m is an eigenvalue associated with the bed geomctry and wave mode, z is the vertical distance 
from the equilibrium liquid-free surface, f is the wave frequency to be determined from 

1 
f = ~x (mg tanh mH) 1'2, [11] 

in which g is the gravitational acceleration, and U(r) is a function of position in the horizontal 
plane. It satisfies the following equation: 

(V~ + mZ)U(r) = 0, [12] 

where V 2. is the two-dimensional Laplacian operator in the z-plane. The slip boundary condition 
applies at the wall in accordance with the inviscid fluid assumption. For a rectangular column of 
widths a and b, the solution is 

q~x sxv 
U ( r ) = U ¢ , ( x , y ) = c o s  a c o s ~ - ,  O<~x<~a, O<~y<~b, [13] 

where q and s are integers representing the half-wavenumbers in the x- and y-direction, 
respectively. The eigenvalue m is given by 

m = rnq, = + q,s = l, 2 . . . . .  [14] 

For a two-dimensional column, one of the integers is set to zero. 
Equations [11] and [14], taken together, can be used to estimate the fluctuation frequency of 

rectangular and two-dimensional beds of shallow and intermediate depth when the integers q and 
s are chosen appropriately. Although the inviscid equation used here accepts all wavenumbers~ in 
reality the dominant modes are determined by the competition between excitation and damping, 
and self-excitation may be a result of instabilities. In a bubbling fluidized bed, the bubbles which 
are themselves the consequence of instabilities are the random excitation source for the surface 
waves. In deep beds, the bubbles initiated at the distributor plate will have the opportunity to grow 
in size as they detach and move upward and eventually coalesce. As a result, more and more 
lower wavenumber modes get excited while the higher wavenumber modes tend to be damped to 
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Table 3. Values of  the constants C.p 

n 

p 0 1 2 

1 7.663 3.682 6.108 
2 14.03 10.66 13.41 
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a greater extent by turbulence and particulate interactions. Hence, in a deep bed we expect that 
the lower wavenumber modes will be dominant and q and s should take the value of  small integers. 
Furthermore, the wavelengths in the two orthogonal directions in the surface plane should not be 
widely different in view of  the nearly spherical shape of  the bubbles. For a rectangular bed, this 
means that a/q and b/s in [14] should be of  the same order. 

For a cylindrical column of  inside diameter D, the solution of  the governing equation for U in 
coordinates (r, 0) is 

U(r) = U,p(r, O) = J,(m,pr)cos nO, 0 <<. r <~ DI2, [15] 

in which n and p are the wavenumbers. The eigenvalue m,p is given by 

Cnp 
m . p = ~ - ,  n = 0 , 1  . . . . .  p = 1 . 2  . . . . .  [16] 

where the constants c,p are listed in table 3 for n = 0, 1, 2 and p = 1, 2. 
Equations [11] and [16] may be used to estimate the frequencies of solids fluctuations in 

cylindrical bubbling columns. For  the reasons already given, the dominant modes are those 
corresponding to the lowest wavenumbers. They are the full-wave or axisymmetric mode 
(n = 0,p = 1) and the half-wave or antisymmetric mode (n = 1,p = 1). It can also be shown from 
[15] that when n > 1, or n ~< 1 and p > 1, the function U,p will result in triangular, kidney-shaped 
and other wave forms, all of  which are unlikely to be excited and therefore, should be excluded. 
These considerations led us to conclude that for the cylindrical bed there exist only the two lowest 
wavenumber modes just cited. 

For a cylindrical bed with H/D larger than about 0.7, the frequency given by [11] and [16] 
becomes nearly independent of  the bed height, and the lowest two wave modes are given by 

t O }  , • = 1/2, 1. [17a] 

In the above, ~ = 1/2 represents the half-wave mode (n = l , p  = 1) and ~t = 1 represents the 
full-wave mode (n = 0,p = 1). The two constants C~l 2 and ct can be evaluated from table 3, and 
they are (3.682) 1/2 = 1.92 and (7.663) ~/2 = 2.77, respectively. Baeyens & Geldart (1974) indicated that 
slugging would occur when H/D > 2 (for D < 0.4 m). Hence, [17a] is expected to be applicable to 
fluidized beds of  intermediate depth, namely, 0.7 < H/D < 2, since the present analysis pertains to 
bubbling beds only. 

The velocity fields of  the first two modes of  fluctuations may be derived from [8], [10] and [13] 
or [15], depending on whether the bed has a rectangular or cylindrical cross section. In the interest 
of  conserving space, only the results for the cylindrical bed are given. For the half-wave mode, 
~t = 1/2, the velocity components are: 

vr=27rB t f~ l c ° shm"(H+z) [  sinh m,, H ] J o ( m l i r ) - l ~ j j ( r n j l r )  cos 0 cos 2nfll t, [18a] 
m l l r  

and 

c o s h m l l ( H + z )  1 
vo = --2rcBtfll - -  Jl (roll r)sin 0 cos 2rrft i t [18b] 

sinh rn~ H mltr 

sinh m,i (H + z) Jl (mii r)cos 0 cos 27rfll t, 
vz = 2nBlfl, sinh rnll H [18c] 

iJMF 20'2 H 
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where m~ D = c~t. For the lull-wave mode, :{ = 1, they are: 

and 

cosh m0t (H + z) 
t'r = - 2nB0f01 sinh m01H Ji (m01 r)cos 2nf01 t, [19a] 

vt, = 0 [19b] 

sinh mol(H + z) 
v. = 2nB0f01 Jo(mo, r)cos 2nf0. t, [19c] 

sinh m01H 

where m0~ D = c0~. It is seen that the velocity field of the half-wave mode, [18], is antisymmetric 
and that of  the full-wave mode, [19], is axisymmetric. 

In a shallow fluidized bed, the bubbles will not have the opportunity to coalesce to form a single 
bubble as depicted in figure 7. Many smaller bubbles will erupt at the bed surface. Under such 
circumstances, the bed diameter is no longer a relevant length scale. Each bubble cell in the bed 
surface can be viewed as a full-wave mode and its frequency may be used to estimate the fluctuation 
frequency in shallow beds. Accordingly, we set ~ = 1 and replace D in [17a] by a wavelength 2. 
Hence, 

J = ~ . [17b] 

The wavelength 2 may be determined from experiments or analysis. When 2 is not available, 
it can be estimated from the bubble diameter at the bed surface. From a consideration of  the 
mass balance for the particles in the surface region, 2 should be at least twice the bubble diameter. 
Thus, the proposed standing surface wave model led us to conclude that, in general, the fluctuation 
frequency of bubbling fluidized beds of intermediate depths and of shallow beds is given by 

.[~ = ~ , [20] 

where ~ refers to wave mode, g is the gravitational acceleration and L is a length scale. 
The numerical constant c~ can be determined theoretically as has been illustrated. For cylindrical 
beds of intermediate depth (2.0 > HID > 0.7), L is the bed diameter D, and for shallow beds, 
L is the wavelength 2. There is no empiricism involved. We note that this result cannot be obtained 
from dimensional analysis. 

An examination of [1 1], [14], [16] and [20] shows that the predicted frequencies depend only on 
the bed height, bed size (diameter for cylindrical beds, length of  two sides for rectangular beds, 
and width for two-dimensional beds), and, for shallow beds, a characteristic wavelength )~. The fluid 
density does not appear in any of these equations. Within limits, the particle properties (density, 
size and shape) and the superficial gas velocity do not have a direct effect. They play a role in 
shallow beds via their influence on the wavelength. It is therefore seen that, for bubbling fluidized 
beds of shallow and intermediate depths, although the excitation force for bed fluctuations 
originates from bubbles, the fluctuation frequency and the bubble frequency at "resonance" are 
controlled by the surface waves. The physics of the waves is not dominated by the bubbles. It is 
the surface wave, not bubbles, that is responsible for the frequency of solids fluctuations in bubbling 
fluidized beds. 

Another result of this study is that, for a bed with a fixed depth, there exists a minimum 
frequency, f~,.2 given by [20], of the solids sloshing motion. For a bed of sufficient depth, this 
frequency is also that of the big bubbles rising and bursting at the bed surface. 

4.2. Surface Waves in Inviscid Fluid of Nonuniform Density 

Among the several assumptions used in the analysis of section 4. I, that of constant density would 
appear to be the most objectionable. In this section, we examine the influence of nonuniform 
density on the predicted frequency of the surface waves. 
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4.2.1. Basic assumptions and governing equations 

We consider small-amplitude surface waves in an otherwise stationary fluid whose mean density 
R is a function of the vertical position z only, 

R = (p*(x,  y, z, t ) )  = R(z), [21] 

where ( ) denotes the space-time average over a horizontal plane. The free surface height will be 
denoted by (*(x, y, t). The z-coordinate is positive downward, with the origin chosen so that the 
average surface height is zero, i.e. 

( (* ( x , y ,  t))  = 0. [22] 

For convenience, the flow variables, p*, the velocity vector u* (or equivalently, its components 
u*, v*, w*), the static pressure p* and (* are denoted with asterisks. The continuity equation for 
the fluid is 

Dp* 
- -  + p * V ' u *  = 0 .  [23]  
Dt 

We consider the simple case that the fluid is incompressible. However, if an equation of state 
can be prescribed for a particular fluid, this simplification can be lifted. The incompressibility 
assumption implies that 

Dp* 
- 0, [24a] 

Dt 

and hence, the continuity equation becomes 

V. u* = 0. [24b] 

Note that the assumption of incompressibility does not preclude the density variation as described 
by [21]. The momentum equation for the fluid is 

, D u *  
p ~ -  - - V p *  + kp*g, [25] 

where k is the unit vector in the z-direction and g is the gravitational acceleration. The dynamic 
boundary condition for the fluid at z = (* is 

p*(x ,y ,  (*, t) = 0 [26] 

and the kinematic boundary condition is 

a(*(x, y, t) 
w*(x, y, ~ *, t) - at [27] 

Since the fluid is inviscid, boundary conditions are not needed for the velocities u* and r*. 
The flow variables, p *, u*, p* and (*, are decomposed into their respective mean and oscillating 

components, to be denoted by upper- and lower-case characters (English or Greek), as follows: 

p*(x, y ,z ,  t) = R(z )  + p(x, y ,z ,  t), [28] 

p*(x, y, z, t) = P(z ) + p(x,  y, z, t), [29] 

u*(x, y, z, t) = u(x, y, z, t), [30] 

and 

(*(x, y, t) = ((x, y, t). [311 

Substituting [28]-[31] into the governing equations [24b] and [25] and making use of the 
boundary conditions [26] and [27], one finds that for the mean flow only the pressure P is nontrivial. 
I t  is given by 

P(z)  = g I :  R(z )  dz. [32] 
Jo 
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4.2.2. Linearized governing equations and boundary conditions for  oscillating components 

The substitution just described also leads to the following linearized equations for p, u, p and 
~. The incompressibility condition becomes 

Dp 
- -  + w R '  = 0, [33] 
Dt 

where R ' =  - dR/dz .  The continuity equation is unchanged: 

V ' u  = 0. [341 

The x- and y-momentum equations are 

,~u gp 
R [351 

~t #x 

and 

av ap 
R 8t = - @ '  [361 

and the z-momentum equation becomes 

R ctt Oz + p g  [37] 

The boundary conditions [26] and [27] are transposed to z = 0 by performing a Taylor series 
expansion with the small parameter ~. The results are 

p(x ,  y, 0, t) = - gR(O)~  [38] 

and 

w(x,  y, 0, t) =--.8~ [39] 
Ot 

4.2.3. Wave frequency based on linearized equations 

For brevity, we consider two-dimensional flows (v = 0). The procedure can be formally extended 
to three-dimensional flows. The normal mode of the progressive surface wave is assumed to be of 
the form: 

w = d *x i"'h (z), [40] 

where i = ~ - 1 ,  k is the wavenumber and v is the frequency. One readily obtains from [34], 

i ei , ,  iv,h , [41 ] U ~ - ~  

where h" = d h / d z ;  from [33], 

and from [35], 

i e ,k ,  i,.,R,h. [42] 

i v ei,~ i"Rh'. 
P =  k 2 

Substituting [41]-[43] into [37] and rearranging leads to 

h" + h ' -  I v 2 R k2h =O, 

where h " =  d 2 h / d z  2. From the kinematic boundary condition [39], we obtain 

= _i ei~.,, i"'h(0). 

[43] 

[441 

[45] 
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Introducing [45] into [38] and equating the result to [43], for z = 0, gives 

h'(0) k 2 

h(0) = -~-~g" 

329 

[46] 

Introducing a dimensionless parameter L = g/v2H, where H is the mean bed height, and a 
dimensionless coordinate ~ = z / H ,  [44] becomes 

h" +- -~  - 1 -  L k2H2h =O, [47] 

in which the prime now denotes differentiation with respect to ~. 
Ai (1991) measured the time-averaged solids volume fraction in a rectangular, atmospheric 

fluidized bed, 38 x 400mm in cross section, with 425-500pm glass spheres. The minimum 
ttuidization velocity determined from pressure drop measurements was 20.1 crn/s. It was found that 
the mean solids density R increases as ~ increases from 0 to ~s(< 1), beyond which R becomes 
essentially a constant. In the region 0 ~< ~ ~< ~s, the data can be well-fitted by a second degree 
polynomial: 

R ( ~ ) = R ( 0 ) ( l + m l ~ + m 2 ~ 2 ) ,  0~<~ ~<~j, [481 

where the numerical coefficients ml, m2 and ~s depend on the fluidizing velocity. It is to be noted 
that the solution of [47] depends only on the ratio R ' / R  and hence the value R(0) is of no 
consequence. 

Solution fo r  region I (0 <~ ~ <<. ~j). Introducing [48] into [47], the latter becomes 

(1 + m I ~ + m 2 ~ 2)h '1' "~ (ml  + 2m2 ~)h ~ - [(1 + m I ¢ + m2 ~ 2) _ L (ml + 2m2 ¢)]k 2H2hl = 0. [49] 

We consider a series solution of the form 

h I = a 0 + a I ~ + 32~ 2 + a3~ 3 + a4~ 4 +"  " .  [50] 

Substituting [50] into [49], combining terms in like powers of ~ and setting their coefficients to zero 
yield the following relations: 

2a2 + m l al - k EH2(1 - L m  I )a0 = 0, [51a] 

6a3 + 4ml a2 + [2m2 - k2H2(l - Lmi )]al - k2H2(ml - 2Lm2)ao = 0, [51b] 

and 

(n + 2) (n + 1)an + 2 + (n + 1)2m I an + l + [(n + l)nm2 - k 2H2(1 - Lml )]an 

- k 2 H 2 ( m l - 2 L m 2 ) a n _ l - k 2 H 2 m 2 a n _ 2 = O ,  for n >/2. [51c] 

Equation [46] requires that 

al _ LkEH 2 [52a] 
a0 

and hence, from [51], 

a2 - -  Ik2H2 [52b] 
- - - - 7  
a0 

a3 

ao 

I 2 2 - ~k H [ml + Lk2H2(I  - Lmi)], [52c] 

a 4 = ~ k 2 H 2  3 2 , 2 2 [(~m I -- 2m:) (1 -- L2k2H 2) + ik H ] [52d] 
a0 

etc. Thus, the solution for region I is 

1 2 2 2 hi = ao{1 - Lk2H2~ + ~k n ~ - ~k2H2[ml + LkZn2(1 - tml)]¢ 3 

l 2 2 4 + ~k2HZ[(~m~ - 2m2)(1 - L2k2H 2) + ~k H ]~ . . . .  }. [53] 
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Solut ion Jbr  the region H (~; <~ ~ <-G 1). In this region, R is essentially uni form and R '  = 0. The 
governing equat ion is 

h i'J - k 2H2hn = 0. [54] 

The solution which satisfies the bounda ry  condit ion h~ , ( l )=  0 is 

hu = b0 sinh k H ( l  - ~). [55] 

To  join the two solutions in regions I and II, we impose the condi t ion that  the velocities u 
and w, the density p and the pressure p are cont inuous  at ¢ = Cj. This requires that  hj(¢j)  = hu(¢j)  
and h ; ( ¢ j ) =  h;l(¢j) which, taken together,  lead to: 

1 L k 2 H 2 ~ +  11.21r42~2 I 2 2 -- - g k  H [ml + Lk2H2(1 - Lm,)]~  3 
+ ~k~H~[(~mf - 2m9(1 - t . ~ k : H O  + ½k~H~]¢ 4 . . . .  

L ~j+~[m I + Lk 2 H2 ( I  2 1 3 2 1],,21.J2]X3 -- . -- L m l ) ] ~ / - - g [ ( ~ m j  2m2)(1 - L a k 2 H Z ) +  St* - -  j~j + " "  

= k H  tanh k H ( 1  - ¢j). [56] 

Equat ion  [56] is the desired relation between L ( = g / v 2 H )  and k H ,  if the two series in the 
n u m e r a t o r  and denomina to r  converge. To  be consistent with the linear analysis (small-ampli tude 
waves), the use of  [56] should p robab ly  be limited to small ~j and the series would be convergent .  
When  the series are semidivergent,  Euler 's  me thod  can be used to determine the sum. 

When  the mean density is uni form th roughou t  the bed, Cj = 0, [56] simplifies to 

v 2 = k g  tanh k H ,  [57] 

which is the same as [11] with m = k and v = 2rcf 

4.2.4. Compar&on 

To examine the 
bed, we consider 
W = 0.625 m. The  
circular frequency is v0 = 6.99 s ~. 

At  Uo/Umf= 1.94, Ai 's  (1991) measured  mean  density da ta  showed that: 

R(~)  
R ( 0 - - - - ) = i + 1 3 ~ - 8 ' 4 7 ~  2, 0 < ~  < ¢ j  

and 

o f  wave f r e q u e n c y  in a variable and uni form densi ty  two-d imens iona l  column 

influence of  the solids density var ia t ion on the wave frequency o f  a bubbl ing 
a two-dimensional  co lumn having a height H = 0 . 6 2 5 m  and a width 

lowest wave mode  has a wavelength 1/k = W/rt .  F r o m  [57], the corresponding 

[58a] 

and 

R(~) 
- 1 + 3 ~ - 7 . 5 ~  2, 0 < ~ < ~ j  [59a] 

R(0) 

R ( ¢ )  
- 1.3, ~j < ~ < l ,  [595] 

R ( 0 )  

with ~j = 0.2. This var ia t ion is also illustrated in figure 8. Using 30 terms in [56], we obtain 
v = 6.99 s-% the same as v 0. The foregoing two examples  clearly demons t ra te  that  the variat ion 
of  the mean  fluid density has very little effect on the frequency of  the surface waves. 

with ~j = 0.768, as shown in figure 8. Using 30 terms in [56], and employing Euler 's  method  of  
comput ing  the sum, we obtain  v = 6.97 s ~. When  50 terms were used, the calculated v remained 
the same up to the second decimal place. 

Next  we consider a smaller var ia t ion of  the bed density which would occur at a lower fluidizing 
velocity. Specifically, we set 

- 6.0, ~; < ~ < 1, [58b] 
R(0) 
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Figure 8. Variation of the average solids density with depth. 
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4.3. Comparison with the Experimental Data 

4.3.1. Cylindrical fluidized beds of intermediate depth 

The experimental results of the bed fluctuation frequencies, listed in table 2, can be compared 
with the model predictions. Since D = 190 mm and the expanded bed height is approximately 
200 mm, [17a] is applicable. The predicted frequencies for the two modes are: ft/2 = (1.92/2n) 
(9810/190) ~/2 = 2.19 Hz and f~ = (2.77/2~) (9810/190) ~/2 = 3.16 Hz. The measured dominant fre- 
quencies listed in table 2 are well within the predictions. 

In figure 9, reported experimental results of a large number of investigators (Hiby 1967; 
Kunii et al. 1967; Lirag & Littman 1971; Wong & Baird 1971; Baird & Klein 1973; Baeyens & 
Geldart 1974; Verloop & Heertjes 1974; Broadhurst & Becker 1976; Fan et al. 1981; Svoboda 
et al. 1983, 1984; Noordergraaf et al. 1987; Rockey et al. 1989) together with the measured results 
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Figure 9. Comparison of the predicted frequency with the experimental data for cylindrical beds of 
intermediate depth, 0.7 < H/D < 2. 
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of this study are compared with the model predictions. The operating conditions for the 
experiments are summarized in table 4. The particle sizes and particle densities used in these studies 
ranged, respectively, from 58 to 3180/~m and from 1.1 to 8.56 g/cm 3. Since [17a] is valid for bed 
depths in the approximate range 0.7 < H / D  < 2, the data plotted in figure 9 are in this range. 
It is seen that the model agrees fairly well with the data, considering the very wide range of 
bed sizes, particle properties and operating conditions. The data of Baeyens & Geldart (1974) and 
of Broadhurst & Beckder (1976) were for slugging beds. Had these been deleted in figure 9, 
the comparison would look even better. They are included for the purpose of illustrating that the 
slugging frequency is generally lower than the sloshing frequency for beds of same geometry. This 
observation is generally in agreement with the results of Svoboda et al. (1983, 1984), Noordergraaf 
et al. (1987) and Rockey et al. (1989). We shall return to this point later. 

4.3.2. Shallow cylindrical fluidized beds 

The predictions of [17b] can be compared with the experimental data reported in the literature 
for shallow beds. Since information on the characteristic wavelength 2 was not available, it was 
evaluated from the estimated bubble diameters. However, this does not mean that the bed 
frequency is determined by the bubble diameter. In fact, there is no unique correlation between 
2 and bubble diameter as will be shown later. In figure 10a the experimental data of Lirag & 
Littman (1971) and Fan et al. (1981) are compared with the predicted frequencies with bubble 
diameters calculated from the empirical correlation of Kato & Wen (1969). In these experiments, 
the particle diameter ranged from 130 to 700 pm, the particle density ranged from 2.4 to 7.7 g/cm 3 
and the aspect ratio H / D  ranged from 0.12 to 0.7 for the Lirag & Littman bed and from 0.3 to 
0.49 for the Fan et al. bed. Since the Kato & Wen's correlation is valid when the bubble growth 
is not affected by the bed wall, its use is limited to bubble diameters smaller than about one-quarter 
of the bed diameter (Baeyens & Geldart 1974). Therefore, in figure 10a, only those data for which 
the calculated bubble diameter was less than half the bed diameter were used. The theoretical 

Table 4. Solids fluctuation frequencies in cylindrical beds of intermediate depth 

D H pp d o u,,f f 
Reference (cm) (cm) Particle (g/cm 3 ) (pm) (cm/s) //0/Umf (Hz) 

Hiby (1967) 19 16.5 Glass 2.41 900-1200 1.5 2.35 
13.2 Sand 1.66 1000-1200 1.5 2.5 
20.3 1.5 2.3 
29.7 1.5 2.3 2.0 

Kunii et al. (1967) 20 30 Catalyst 1.54 150 2 3.4 8.5 3.65 
40 50 5.6 1.8 

>8  2.5 

Lirag & Littman (1971) 6.5 10.5 Glass 2.42 500 19.1 1.23 3.75 
8.4 2.48 318 7.09 1.23 5.5 

Wong & Baird (1971) 10.2 11.2 Glass 2.5 390-470 12.2 1.5 3.7 

Baird & Klein (1973) 10.3 8.2-20.4 Glass 2.49 254 3.6 >2  2.2 
8.5 Hematite 5.72 563 21.5 >2.2 2.8 

Baeyens & Geldart (1974) 30.8 35 Catalyst 1.17-2.65 58 1848 High 1.36 
sand 

Verloop & Heertjes (1974) 6.5 5.3 Copper 8.56 370 29.5 1.2-1.4 4.0 
8.8 460 39.5 1.2--2 3.0 

Broadhurst & Becker (1976) 10 I0 Sand 2.66 71 213 3.21 
20 1.81 

Fan et  al. (1981) 20.3 35 Sand 2.64 711 36.8 2 2.0 
40 1.5 2 1.5 
40 2.62 491 14 1.5 2 1.8 

17 Lime 1.34 900 30.8 1.5 3.9 

17 Limestone 2.22 565 24,2 1.07 1.55 3.3 

31 Glass 2.80 450-540 23.0 1.5 3 2.3 

46 Nylon 1.1 3180 I00 2.6 5 1.65 

19 Glass 2.50 500 21,9 1.5~1 2.41 
705 30.2 1.5~1 2.31 

Svoboda et  al. (1983) 8.5 

Svoboda e t  al. (1984) 8.5 

Noordergraaf et  aL (1987) 15 

Rockey et  al. (1989) 30.8 

This study 19 
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predictions are shown for 2 = 3DB and 2 = 2DB. The reasons for the choice are as follows. 
Experimental results obtained by Botterill et al. (1966) showed that the extent of the surface 
disturbance which corresponds to half the wavelength is about 1.5 times the bubble diameter. 
Hence 2 = 3D B. On the other hand, the lower limit of 2 is 2DB as has been stated earlier. It is seen 
from figure 10a that the predicted frequency based on ). = 3DB exhibits a reasonable agreement 
with the experimental data. For beds of intermediate depth, the antisymmetric and axisymmetric 
frequenciesft/2 andf~ depend only on the bed diameter and are independent of DB. For comparison 
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purposes they have been evaluated for the beds of Lirag & Littman (1971) and Fan et al. (1981). 
The results are shown by arrows in figure 10a. Hiby (1967) reported the fluctuation frequencies 
of a shallow bed for a number of particle sizes and particle densities at different heights 
(0.022 < HID < 0.52). Figure 10b compares Hiby's data with the prediction of [17b] with 2 = 3DB 
and 5DB. The latter was included since the calculated bubble diameters based on the Kato & Wen's 
correlation were found to be unrealistically small, being only a few particle diameters. Again, for 
comparison purposes, the two frequencies, ft and f~/2, for Hiby's bed are shown by the arrows in 
figure 10b. 

If one assumes that 2 is proportional to D s and hence is proportional to H according to Kato 
& Wen's correlation for a bed with a porous distributor plate, then [17b] shows that f is 
proportional to (g/H) t/2. This results in a prediction for the fluctuation frequency in shallow beds, 
which is the same as that developed by Verloop & Heertjes (1974), [1]. 

4.3.3. Rectangular and two-dimensional beds 

The experimental results of Botterill et al. (1966), Goossens (1976), Canada et al. (1978) and 
Ai (1991) for the solids fluctuation frequencies in square and rectangular beds are summarized in 
table 5 along with the operating conditions. The predicted frequencies, fq~, are calculated from [11] 
and [14] for several sets of (q, s) values. It is seen that the predictions qualitatively agree with the 
measurements. For two-dimensional beds, the results of Kunii et al. (1967) and Didwania & Homsy 
(1981 b) for a liquid-solid bed, are shown in table 6. The predicted frequencies are also calculated 
from [11] and [14] with q = 0 and s as the half-wavenumber. Here the predictions are fair. 

5. DISCUSSION 

This paper makes a distinction between the sloshing and slugging motions of a fluidized bed. 
Slugging can be viewed as plain gas void (slug) traveling upward with solids in plug formation 
oscillating vertically in a one-dimensional column. The motion is more appropriately modeled by 
traveling waves. This contrasts with the standing surface wave model for the sloshing motion 
considered in this study. Depending on the experimental conditions, one of the mechanisms may 
be dominant. Sloshing fluctuations usually exist in shallow beds and beds of intermediate depth. 
Deep beds are conducive to slugging. When this occurs, the slugging models of Verloop & Heertjes 
(1974) and Baeyens & Geldart (1974) can be used. These models show that the slugging frequency 
decreases approximately linearly with the bed height and becomes invariant beyond a critical 
height. For shallow fluidized beds, on the other hand, sloshing is the dominant mechanism and 
the bed height plays no role in the sloshing frequency. For beds of intermediate depth, both 
sloshing and slugging may be operative, with sloshing being the dominant mechanism at the 
shallow end. It transits to slugging as the depth increases. More research is needed to delineate 
the transition as influenced by the bed parameters. In the following, experimental results in the 
literature are examined further and interpreted and they lend support to the standing surface wave 
model. 

Svoboda et al. (1983, 1984) measured the solids fluctuation frequencies in a cylindrical fluidized 
bed of 8.5 cm i.d. with HID = 2. For corundum particles of 715 #m mean diameter at U0//.)mf = 1.2, 
two distinct frequencies could be identified from the power spectrum, one at about 2.0 Hz and the 
other at about 3.9 Hz (Svoboda et al. 1983, figure 4). For limestome particles of mean diameter 
565/~m, the two frequencies were approximately 2.1 Hz, which varied slightly with gas velocity, 
and 3.3 Hz, which was independent of gas velocity (Svoboda et al. 1984, table 2). At low gas 
velocities, Uo/U,~f< 1.2, the higher frequency was dominant. With increasing gas velocities, 
UO/Umf> 1.36, the lower frequency became dominant and the bed was observed in slugging 
fluctuations. From the standing surface wave model one finds f,/2 = 3.28, which is close to the 
measured frequency when the bed was not slugging. Hence, one may conclude that the observed 
higher frequency is associated with sloshing and the lower one with slugging. 

Noordergraaf et al. (1987) measured the fluctuation frequencies in a cylindrical fluidized bed of 
15 cm i.d. For a freely bubbling bed of glass beads of 450-540 #m at Uo/Umr= 2 and a bed height 
of 31 cm, the two frequency peaks determined from the power spectrum (figure 3a of the paper) 
were found to be 2.33 Hz (dominant frequency) and 3.53 Hz (side frequency). Although the 
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dominant fluctuation frequency of the bubbling bed was reportedly not repeatable in the 
experiments, an average value of 2,3 Hz can be evaluated from their data (figure 6 in the paper). 
Using the standing surface wave model, we obtained f~,,2 = 2.47 Hz and f~ = 3.56 Hz. Thus, their 
data agree well with the antisymmetric and axisymmetric modes of the solids sloshing motion. 
When other particles (sand of 850-1000#m and alumina of 3000/~m) were used, the bed was 
observed in a slugging state and slugging frequencies in the range 1-1.5 Hz were obtained, which 
are distinctly lower than the frequencies of the bubbling bed. 

Rockey et al. (1989) measured the fluctuation frequencies of 3.18 mm diameter Nylon particles 
in a cylindrical bed of 30.8 cm i.d. and 46 cm high. The power spectra at four velocities were 
presented. At uo/Umr= 1.1, the bed was observed to be slugging and the spectrum showed a 
dominant frequency at 0.9 Hz. Two small peaks at frequencies of 1.7 and 2.6 Hz were also 
identifiable from the spectrum. At UO/Umf = 2.6 and 5, a freely bubbling bed was observed and the 
dominant frequency was about 1.65 Hz. The spectrum for Uo/Umf = 2.6 also showed a secondary 
frequency at about 3 Hz. At Uo/Um~" = 8.5, the bed material was elutriated continuously from the 
vessel and the pressure fluctuations diminished. Again, using the standing surface wave model, 
we found Ji:2 = 1.72 Hz and Jl = 2.49 Hz. Thus, a good agreement is also obtained. 

While the present investigation is concerned mainly with sloshing motion, the following 
comments on slugging are appropriate. There are two kinds of slugging motions, one is associated 
with plane voids (square-nosed plug) occupying the entire cross section of the bed column, and 
the other is associated with large (round capped) bubbles of sizes comparble to the bed diameter. 
The first kind of slugging may exist when u0 is just larger than Umr and is increasing. An example 
is the 15 cm i.d. bed of Noordergraaf  et al. (1987) with sand particles of 850-1000/~m and alumina 
of 3000pro. Similar slugging was also observed in our 190 mm i.d. bed with glass spheres of 
mean diameter of 2.6 mm. The height of the plane void was found to vary from a few millimeters 
to a few centimeters, depending on the gas velocity. However, for large-diameter fluidized beds, 
the voids may break down into bubbles, as reported by Rockey et al. (1989) in their 30.8 cm i.d. 
bed with 3.18 mm Nylon spheres. All of these particles belong to the Geldart group D classification. 
Therefore, the mechanism responsible for this kind of slugging may be related to the particle 
properties. The definitive answer has to come from further study. The second kind of slugging 
appears in deep beds (e.g. H/D > 2) with u0 being such that complete bubble coalescence takes 
place. Such was the case for the experiments of Baeyens & Geldart (1974). The data reported by 
Noordergraaf  et al. (1987) for the first kind of slugging and by Baeyens & Geldart (1974) for the 
second kind of slugging seem to suggest that the fluctuation frequency of both kinds of slugging 
depends only on the bed diameter and height (different dependence as given by [2] and [4], 
respectively). It is also interesting to note that these slugging frequencies are distinctively lower than 
the sloshing frequency for the same bed diameter. 

6. C O N C L U D I N G  R E M A R K S  

From the foregoing discussion it can be concluded that sloshing is the dominant mechanism of 
solids global fluctuations in bubbling fluidized beds, and the sloshing frequency can be reasonably 
well predicted by the standing surface wave model. It is also seen that information on the dominant 
frequencies alone is insufficient to identify the mechanisms of solids fluctuations, especially when 
sloshing and slugging are competing mechanisms in fluidized beds of intermediate depth. The 
slugging models of Verloop & Heertjes (1974) and of Baeyens & Geldart (1974) are not applicable 
to bubbling beds of shallow and intermediate depth. For beds of  the same geometry, the slugging 
frequency is always lower than the sloshing frequency since slugging is characterized by the 
completion of  bubble coalescence and therefore is associated with large bubbles (or slugs). 
Similarly, antisymmetric sloshing has a lower frequency than axisymmetric sloshing because the 
former is associated with larger bubbles, as illustrated in figure 7. The standing wave model is 
expected to find applications for large commercial fluidized beds where bubbling is the dominant 
feature. 
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